Abstract

Power generator often rely on the stability and efficiency. For both active power and reactive power stability, it is needed a device that could control the power. In active power control, the output frequency must be controlled. Load frequency control has become a common solution for frequency control in hydraulic power generating units. The design of the load frequency control is still far from good but has succeeded in controlling the frequency back to normal at each load source and input. In this study, the proposed model is to use a PID controller that has been set with the Transfer Function Balanced tuning method. From the source input simulation results, the proposed model could fix the overshoot frequency by 71.929%. and reached rise time by 4.426 s. From the load input simulation results, the proposed model could fix the undershoot frequency by 58.974%. and reached rise time by 1.076 s.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.