Abstract

Recently, the approximate methods based on continuous models have been developed to perform structural analysis of composite lattice structures due to their relative simplicity and computational efficiency. This paper defines the modified effective stiffness considering the directionally dependent mechanical properties to an intersection of ribs and mode shape function of a composite lattice cylinder. It subsequently presents an approximate method based on the continuous model of conducting a buckling analysis of the composite lattice cylinder with various boundary conditions under uniform compression. This method considers the coupled buckling mode as well as the global and local buckling modes. The validity of the present method is verified by comparing the results of the finite element analysis. In addition, a parametric analysis is performed to investigate the effects of the design parameters on the critical load and buckling mode shape of the composite lattice cylinder based on the present method. Finally, we apply the present method to perform the optimization of a composite lattice cylinder for a high-speed vehicle to minimize the mass. Consequently, it is concluded that the present method is very suitable to optimization of composite lattice cylinders due to their relative simplicity and computational efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call