Abstract

The field production profile over the yearly horizon is planned for a balance between economy, security, and sustainability of energy. An optimal drilling schedule is required to achieve the planned production profile with minimized drilling frequency and summation. In this study, we treat each possible production process of each well as a dependent time series and the basic unit. Then we ensemble all of them into a tensor. Based on formulated tensor calculation and Lasso regularization, a linear mathematical optimization model for well drilling schedule was developed. The model is aimed at minimizing production profile error while optimizing drilling frequency and summation. Although the model proposed in this work requires more memory consumption to be solved using a computer, it is assured as a linear model and could be numerically globally solved in a stable and efficient way using gradient descent, avoiding complex nonlinear programming problems. Main input data and parameters involved in the model are analyzed in detail to understand the effects of different production parameters on the drilling schedule and production profile. The proposed model in this work can evaluate the manual drilling schedule and automatically generate an optimized drilling schedule for the gas field, significantly reducing development plan formulation time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call