Abstract

The takeoff process of a seaplane is different from that of a conventional land-based plane owing to the influence of hydrostatic, hydrodynamic, and aerodynamic forces. As a result, more energy will be consumed by the electric propulsion unit (EPU) of a seaplane during takeoff. Given the limited energy density of contemporary batteries, the energy consumed by the seaplane during its flight mission profile was minimized in this study by improving the efficiency of the EPU using a proposed optimization method. To meet the performance requirements of the seaplane EPU, the pitch angle of the propeller was taken as the optimization variable and the system loss was mathematically modeled. The performance of the EPU was thereby optimized, its consumption during flight was reduced, and the seaplane endurance was increased accordingly. The proposed optimization method was subsequently verified using a prototype test of a two-seat electric seaplane. The results show that the proposed method can reduce the energy consumption of the EPU by more than 5% during a single flight.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call