Abstract
This article proposes a class of resilient state estimators for linear time-varying discrete-time systems. The dynamic equation of the system is assumed to be affected by a bounded process noise. As to the available measurements, they are potentially corrupted by a noise of both dense and impulsive natures. The latter, in addition to being arbitrary in its form, need not be strictly bounded. In this setting, we construct the estimator as the set-valued map, which associates with the measurements the minimizing set of some appropriate performance functions. We consider a family of such performance functions, each of which yielding a specific instance of the proposed general estimation framework. It is then shown that the proposed class of estimators enjoys the property of resilience, i.e., it induces an estimation error, which, under certain conditions, is independent of the extreme values of the (impulsive) measurement noise. Hence, the estimation error may be bounded, while the measurement noise is virtually unbounded. Moreover, we provide several error bounds (in different configurations), whose expressions depend explicitly on the degree of observability of the system being observed and on the considered performance function. Finally, a few simulation results are provided to illustrate the resilience property.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.