Abstract

In this paper, a novel adaptive cruise control (ACC) algorithm based on model predictive control (MPC) and active disturbance rejection control (ADRC) is proposed. This paper uses an MPC algorithm for the upper controller of the ACC system. Through comprehensive considerations, the upper controller will output desired acceleration to the lower controller. In addition, to increase the accuracy of the predictive model in the MPC controller and to address fluctuations in the vehicle’s acceleration, an MPC aided by predictive estimation of acceleration is proposed. Due to the uncertainties of vehicle parameters and the road environment, it is difficult to establish an accurate vehicle dynamic model for the lower-level controller to control the throttle and brake actuators. Therefore, feed-forward control based on a vehicle dynamic model (VDM) and compensatory control based on ADRC is used to enhance the control precision and to suppress the influence of internal or external disturbance. Finally, the proposed optimal design of the ACC system was validated in road tests. The results show that ACC with APE can accurately control the tracking of the host vehicle with less acceleration fluctuation than that of the traditional ACC controller. Moreover, when the mass of the vehicle and the slope of the road is changed, the ACC–APE–ADRC controller is still able to control the vehicle to quickly and accurately track the desired acceleration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.