Abstract
Purpose – This paper seeks to present an optimization‐based approach to design acceptance sampling plans by variables for controlling non‐conforming proportions in lots of items. Simple and double sampling plans with s known and unknown are addressed. Normal approximation distributions proposed by Wallis are employed to handle plans with s unknown. The approach stands on the minimization of the average sampling number (ASN) taking into account the constraints arising from the two point conditions on the operating characteristic (OC) curve. The resulting optimization problems fall under the class of mixed integer non‐linear programming (MINLP), and are solved employing GAMS. The results obtained strongly agree with classical acceptance sampling plans found in the literature, although outperforming them in some cases, and providing a general approach to address other cases.Design/methodology/approach – The approach takes the form of formulation of the design of acceptance sampling plans by variables for non...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Quality & Reliability Management
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.