Abstract

AbstractThis paper presents an optimization approach for decentralized Quality of Service (QoS)‐based scheduling based on utility and pricing in Grid computing. The paper assumes that the quality dimensions can be easily formulated as utility functions to express quality preferences for each task agent. The utility values are calculated by the user‐supplied utility function that can be formulated with the task parameters. The QoS constraint Grid resource scheduling problem is formulated into a utility optimization problem. The QoS‐based Grid resource scheduling optimization is decomposed into two subproblems by applying the Lagrangian method. In the Grid, a Grid task agent acts as a consumer paying for the Grid resource and the resource providers receive profits from task agents. A pricing‐based QoS scheduling algorithm is used to perform optimally decentralized QoS‐based resource scheduling. The experiments investigate the effect of the QoS metrics on the global utility and compare the performance of the proposed algorithm with other economical Grid resource scheduling algorithms. Copyright © 2006 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.