Abstract
This paper proposes an approach to develop schedules for charging batteries in a battery center. This problem arises in warehouses and logistics centers that attempt to provide uninterrupted operations with battery powered machinery such as stackers. These operations often require recharging batteries on location, a process that involves two decisions: determining charging start-times and assigning batteries to chargers. Prices of grid-provided electric energy vary by hour of the day and can be almost negligible for energy available from photovoltaic solar collectors. Thus, efficient schedules should recharge batteries during time intervals with low tariffs while minimizing the time batteries spend in queue waiting for an available charger. In this situation, batteries arrive at the battery center during the operation. The model assumes that the counts of arriving batteries in time bands are known. The objective is to determine a charging schedule that minimizes a weighted sum of the costs of energy and delays. We develop a MIP model that incorporates the main features of the battery charging process. Unfortunately, computation times to solve these MIPs are too long to be practical. To overcome this limitation, we develop a constructive heuristic that finds a feasible solution in a matter of seconds, even for large-sized instances, with a relatively low GAP of 9.67%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.