Abstract
Mixed noises can be defined as a combination of different types of noises acting on a single carrier. There has been a mention of various mechanisms used to restore images corrupted with mixed noise in the past. This paper proposes a simple method based on fuzzy set theory and Bilateral Filter to remove mixed noises and compares it with previously mentioned techniques such as: Vector Median Filter(VMF), Vector Direction Filter (VDF), Fuzzy Peer Group Averaging (FPGA), Fuzzy Vector Median Filter (FVMF), Bilateral Filter (BF), Adaptive Bilateral Filter (ABF), Switching Bilateral Filter (SBF), Joint Bilateral Filter (JBF), and Trilateral Filter (TF) on the basis of performance metrics such as Peak Signal to Noise Ratio (PSNR), Mean Absolute Error (MAE), Mean Square Error (MSE) and Normalised Colour Difference (NCD). For the purpose of a detailed analysis, the performance of each method is evaluated by varying the image size and the noise density by implementing them in MATLAB-09. The mixed noise used in this paper is a combination of three noise i.e. poisson, impulse and Gaussian noise. The simulation and result shows that the proposed method provides better PSNR and hence better image quality than almost all the methods mentioned above.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Signal Processing, Image Processing and Pattern Recognition
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.