Abstract
Nowadays, analysing videos from a surveillance system in real-time is very important for resolving the security related social issues. Foreground extraction and object detection is a vital task in video analysis. In the proposed methods background, modelling is treated as an optimisation problem and solved using particle swarm optimisation. The background is modelled at regular intervals of time for adapting the changes in the environment. Then the background subtraction is applied to the current frame with the corresponding background modelled frame to extract the foreground. Added to it the optical flow applied image is compared with the foreground extracted image to avoid the false positives (FP) and false negatives (FN). This proposed foreground extraction technique for real-time videos gives results better than the previous algorithms with respect to the quality of extraction and space complexity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of High Performance Computing and Networking
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.