Abstract

Increased environmental concerns and the emphasis on material and energy recovery are gradually changing the orientation of MSW management and planning. In this context, the application of optimisation techniques have been introduced to design the least cost solid waste management systems, considering the variety of management processes (recycling, composting, anaerobic digestion, incineration, and landfilling), and the existence of uncertainties associated with the number of system components and their interrelations. This study presents a model that was developed and applied to serve as a solid waste decision support system for MSW management taking into account both socio-economic and environmental considerations. The model accounts for solid waste generation rates, composition, collection, treatment, disposal as well as potential environmental impacts of various MSW management techniques. The model follows a linear programming formulation with the framework of dynamic optimisation. The model can serve as a tool to evaluate various MSW management alternatives and obtain the optimal combination of technologies for the handling, treatment and disposal of MSW in an economic and environmentally sustainable way. The sensitivity of various waste management policies is also addressed. The work is presented in a series of two papers: (I) model formulation, and (II) model application and sensitivity analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.