Abstract
An illumination optimisation technique applied to multi-reflective 3-D machine vision based on a projector-camera system is introduced, in which the projector plays a key role to compensate for surface reflectance at each pixel to be inversely proportional to the brightness of the pixel under ambient light. The adaptive illumination technology was achieved by iterations emphasising different illumination intensities according to different surface orientations and requiring an accurate correspondence between the projector pixels and the camera pixels. In order to establish the most effective correspondence to prepare for subsequent adaptive illumination, 4 kinds of grating patterns, including sinusoidal, rectangular, triangular, and dual-frequency sinusoidal grating patterns, were projected and compared. The iterations were halted when an optimally lit scene was obtained; the further experiments under weak and strong light searched for the best method of illumination optimisation and confirmed the reliability of the adaptive illumination. The proposed optimisation design could run in real time and became a viable solution for industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.