Abstract

Hyperspectral images (HSI) contain hundreds of bands, which brings huge amount of data. In this paper, a novel compression method based on optimal-truncation tucker decomposition for HSI is proposed. HSI tensor is firstly decomposed into complete core tensor. And then core tensor and factor matrices are truncated according to the optimal number of components of core tensor along each mode (NCCTEM), which is determined by the proposed criterion for the optimal NCCTEM and searching strategy. Experimental results show that the proposed method has the excellent reconstruction comparable to the traditional compression methods. Furthermore, it significantly reduces the compression and decompression time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.