Abstract

An airborne system has been developed for charting shallow coastal and inland waters. The primary components of this system are an aerial survey camera, a profiling laser radar, an analytical stereo plotter, and a multisensor track recovery system (TRS). The TRS comprises a gimbaled inertial navigation system and a number of auxiliary sensors which acquire redundant position and attitude information. The sensor data are combined postmission using a U-D factorized Kalman filter and modified Bryson-Frazier smoother to compute accurate estimates of the orientation parameters of the survey camera at the times of film exposure. These parameters are used to position each overlapping pair of photographs on the analytical plotter to form a stereo image and corresonding analytical stereomodel from which water depth measurements are made. Flight trial results demonstrate that the TRS can achieve radial position and attitude accuracies which exceed 1 m and 2 arcmin root mean square (rms), respectively, and that this level of performance is sufficient to enable water depth measurements to be made to an accuracy of better than 0.65 m (rms).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.