Abstract
In this paper, the maintenance problem for a cold standby system consisting of two dissimilar components and one repairman is studied. Assume that both component 1 and component 2 after repair follow geometric process repair and component 1 is given priority in use when both components are workable. Under these assumptions, using geometric process repair model, we consider a replacement policy N under which the system is replaced when the number of failures of component 1 reaches N. Our purpose is to determine an optimal replacement policy N∗ such that the average cost rate (i.e. the long-run average cost per unit time) of the system is minimized. The explicit expression for the average cost rate of the system is derived and the corresponding optimal replacement policy N∗ can be determined analytically or numerically. Finally, a numerical example is given to illustrate some theoretical results and the model applicability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.