Abstract
In this paper, we develop a preventive maintenance (PM) strategy for a solar photovoltaic system composed of solar panels functioning as a series system. The photovoltaic system is considered in a failed state whenever its efficiency drops below a predefined threshold or any electrical wiring element is damaged. In such a situation of failure, a minimal repair is performed. The proposed PM strategy suggests systematically replacing n panels with their respective wiring system every time units T over a finite operating time span H. The panels to be preventively replaced are selected by the maintenance agent after an on-site overall assessment of all panels, making sure every time not to replace panels previously replaced during a given replacement cycle of all panels of the system. An analytical model is proposed in order to simultaneously determine the optimal PM period, T, and the optimal number of solar panels, n, to be replaced at each PM. This is done by modeling and minimizing the expected total maintenance cost over the finite operating time horizon H. A numerical example is presented to illustrate the use of the proposed modelling approach and to discuss the obtained results. The latter provide the optimal solutions (T*, n*) for different combinations of input parameters. They also show the economic relevance of the proposed PM strategy through estimation of the economic gain when comparing the situations with and without preventive maintenance.
Highlights
Photovoltaic (PV) and thermal panels using solar energy represent one of the most important and frequently used renewable energy production systems today
We develop a preventive replacement strategy for a solar photovoltaic system composed of solar panels functioning as a series system
Referring to the literature related to reliability and maintenance [15], minimal repair is defined as a corrective maintenance action performed at breakdowns in order to restart the regular activity of the system but without improving its reliability; meaning that after minimal repair, the system is back to operation with the same failure rate it had before failure
Summary
Photovoltaic (PV) and thermal panels using solar energy represent one of the most important and frequently used renewable energy production systems today. Torrent-Fontbona and López [8] developed a renewable energy generator plan based on the joint determination of how many new solar panels are needed—and what type, location, and size they should be—in order to maximize installation efficiency, minimize system losses, and improve installation performance. We consider the question of what preventive maintenance (PM) strategy should be adopted in order to reduce as much as possible the loss of efficiency over the exploitation time span of a photovoltaic system. This is an important issue for investors in this type of renewable energy as well as for its operators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.