Abstract

A control parametrization based optimal PID tuning scheme for a single-link manipulator is developed in this paper. The performance specifications of the control system are formulated as continuous state inequality constraints. Then, the PID optimal tuning problem of the single-link manipulator can be formulated as an optimal parameter selection problem subject to continuous inequality constraints. These continuous inequality constraints are handled by the constraint transcription method together with a local smoothing technique. In such a way, the transformed problem becomes an optimal parameter selection problem in a canonical form, which can be solved efficiently by control parametrization method. Since approach is using the gradient-based method, the corresponding gradient formulas for the cost function and the constraints are derived, respectively. The effectiveness of the proposed method is demonstrated by numerical simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.