Abstract

AbstractAn optimal nonlinear Galerkin method with mixed finite elements is developed for solving the two‐dimensional steady incompressible Navier‐Stokes equations. This method is based on two finite element spaces XH and Xh for the approximation of velocity, defined on a coarse grid with grid size H and a fine grid with grid size h ≪ H, respectively, and a finite element space Mh for the approximation of pressure. We prove that the difference in appropriate norms between the solutions of the nonlinear Galerkin method and a classical Galerkin method is of the order of H5. If we choose H = O(h2/5), these two methods have a convergence rate of the same order. We numerically demonstrate that the optimal nonlinear Galerkin method is efficient and can save a large amount of computational time. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 762–775, 2003.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.