Abstract

This article presents a problem of determining optimum cluster size and sampling units in multivariate surveys. When a cluster sampling design is to be used and more than one characteristic is under study, it is usually not advisable to use the individual optimum cluster size and sampling unit for one reason or the other. In such situations, some criterion is needed to work out an acceptable cluster size and sampling unit which are optimum for all characteristics in some sense. Moreover, for practical implementation of sample size, we need integer values of the cluster size and sampling unit. Therefore, the present article addresses the problem of determining integer optimum compromise cluster size and sampling unit when the population means of the various characteristics are of interest. Formulating the problem as an All Integer Nonlinear Programing Problem (AINLPP), the article develops a solution procedure using a Genetic algorithm. The compromise solution discussed is the optimal in the sense that it minimizes a weighted sum of the variances of the cluster sample means of various characteristics under study. Two numerical examples illustrate the practical application of the solution procedure. The results show that the proposed technique can be efficiently applied in determining the sample size in multivariate cluster sampling design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.