Abstract

Modern agriculture calls for efficient and environmental-friendly agricultural water and land management practice. Agricultural water and land utilization mode has a great impact on the amount of carbon emissions, and thus the aim of this work is to propose an optimal modeling approach for generating efficient agricultural water and land management alternatives and reducing carbon emission in agricultural water-energy-food nexus system. This study presents a novel approach consisting of carbon footprint lifecycle assessment method and bi-level multi-objective stochastic programming model. The proposed approach has contributions in following aspects: (1) the environmental impact of different resource allocation strategies can be measured in optimization (2) the spatial variability of spatial data (e.g., ET0 and precipitation); can be fully reflected via remote sensing information; (3) tradeoffs among two decision-making levels and their conflicting objectives under randomness of surface water availability can be addressed. The proposed approach was applied to the middle reaches of the Heihe River basin, northwest China. After solving the proposed model, the optimal water and land use alternatives under different hydrological years can be generated. Decision makers can plan agricultural production strategy according to optimization schemes, and reduce carbon emission through increasing vegetable cultivation and surface water utilization. Furthermore, the performance comparison of different models indicated that fierce conflicts exist between income fairness and economic benefits. The comprehensive evaluation value of bi-level multi-objective stochastic programming model is 0.7036, which is highest among single- and multi-objective models, showing that such model has obvious advantage in dealing with multiple decision-making levels and conflicting objectives. This approach can help decision makers of similar regions manage the agricultural production system in a more efficient and environment-friendly way.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.