Abstract
To maintain the balance of byproduct gas holder is an important task in optimal scheduling of byproduct energy in steel industry. However, this is often influenced by many factors and is difficult to obtain a precise mechanism model for analysis. In this paper, an optimal method for prediction and adjustment on byproduct gas holder is proposed. Considering the different operation styles of gasholders, both single and multiple gasholders level prediction models are established by machine learning methodology. And, a hybrid parameter optimization algorithm is developed to optimize the model for high prediction accuracy. Then, based on the predicted gasholder level, the optimal adjustment amount is calculated by a novel reasoning method to sustain the gasholder within safety zone. This method has been verified in the Energy Center of Baosteel, China. The results demonstrate that the proposed approach can precisely predict and adjust gasholders and provide a remarkable guidance for reasonable scheduling of byproduct gases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.