Abstract
We propose a probabilistic numerical method based on optimal quantization to solve some multi-dimensional stochastic control problems that arise, for example, in mathematical finance for portfolio optimization. We then consider some controlled diffusions with most components control free. The Euler scheme of the uncontrolled diffusion part is approximated by a discrete time process obtained by a nearest neighbor projection on some grids optimally fitted to its dynamics. The resulting process is also designed to preserve the Markov property with respect to the filtration of the Euler scheme. This Markovian quantization approach leads to an approximate control problem that can be solved numerically by the dynamic programming formula. This approach seems promising in higher dimension. A prioriLp-error bounds are stated and we show that the spatial discretization error term is minimal at some specific grids. A simple recursive algorithm is devised to compute these optimal grids by induction based on a Monte Carlo simulation. Some numerical illustrations are processed for solving a mean-variance hedging problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.