Abstract

Solving systems of linear equations is one of the most important primitives in many different areas, including in optimization, simulation, and machine learning. Quantum algorithms for solving linear systems have the potential to provide a quantum advantage for these problems. In this work, we recall the Chebyshev iterative method and the corresponding optimal polynomial approximation of the inverse. We show that the Chebyshev iteration polynomial can be efficiently evaluated both using quantum singular value transformation (QSVT) as well as linear combination of unitaries (LCU). We achieve this by bounding the 1-norm of the coefficients of the polynomial expressed in the Chebyshev basis. This leads to a considerable constant-factor improvement in the runtime of quantum linear system solvers that are based on LCU or QSVT (or, conversely, a several orders of magnitude smaller error with the same runtime/circuit depth).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.