Abstract

Set-based analysis that jointly considers multiple predictors in a group has been broadly conducted for association tests. However, their power can be sensitive to the distribution of phenotypes, and the underlying relationships between predictors and outcomes. Moreover, most of the set-based methods are designed for single-trait analysis, making it hard to explore the pleiotropic effect and borrow information when multiple phenotypes are available. Here, we propose a kernel-based multivariate U-statistics (KMU) that is robust and powerful in testing the association between a set of predictors and multiple outcomes. We employed a rank-based kernel function for the outcomes, which makes our method robust to various outcome distributions. Rather than selecting a single kernel, our test statistics is built based on multiple kernels selected in a data-driven manner, and thus is capable of capturing various complex relationships between predictors and outcomes. The asymptotic properties of our test statistics have been developed. Through simulations, we have demonstrated that KMU has controlled type I error and higher power than its counterparts. We further showed its practical utility by analyzing a whole genome sequencing data from Alzheimer's Disease Neuroimaging Initiative study, where novel genes have been detected to be associated with imaging phenotypes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.