Abstract

This study is focused towards analyzing the heat and flow movement among two stretching rotating disks inside water-based carbon nanotubes. The idea of thermal boundary conditions and heat convection is used and the system is expressed in partial differential equations. Using the similarity techniques, the model is successfully converted to a nonlinear ordinary differential equation. A familiar collocation method is used to simulate the outcomes of the governed system while the method is validated through a set of tables and assessed with existing literature. The physical aspects of the proposed model have been studied in detail and assisted via graphical diagrams against the variation of different parameters. It is found that the multiple-wall carbon nanotubes intensify the system quickly and improve the rate of heat transmission. It is also noted that the proposed method is in excellent in agreement with already published studies and can be extended for other physical problems. Moreover, when values of Re parameter increase, a drop is noted in the magnitude of radial velocity near the faces of the disks. It is very clear from the tabular comparison that collocation scheme is in good agreement with already published studies and homotopic solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.