Abstract

Many fundamental problems in the area of distributed systems such as security, reliable routing, network survivability and broadening available bandwidth can be addressed through the use of disjoint paths between communication endpoints. Therefore, distributed solutions to the disjoint paths problem are of crucial importance to these fundamental problems. Disjoint paths naturally exist in traditional networks; however, these networks provide no guarantees regarding the presence and the number of available disjoint paths. On the other hand, network topologies structured based on Caley graphs such as hypercube, star networks and their variations possess many desirable properties related to disjoint paths. Therefore, it is anticipated that backbones of future networks will be structured following some Caley graph topologies. In this paper, we present a simple novel stabilizing and inherently stabilizing algorithm to route messages over all node-disjoint paths of optimal length from one non-faulty process to another in at most n+1 rounds in an n-dimensional hypercube network in the presence of crash failures. The proposed algorithm can tolerate up to 2n-⌈log (n+1)⌉ process/link failures in the network and a maximum of ⌊(L-2)/3⌋ process/link failures on each disjoint path, where L is the number of processes on a disjoint path and the distance between any two failed processes/links is at least three. The proposed algorithm tolerates a large number of process and link failures, while delivering all n messages over optimal-length disjoint paths in the presence of maximum permissible process/link failures on each path. This is achieved by a simple uniform distributed algorithm using only local knowledge of failure locations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.