Abstract

The grey model GM(1,1), which is based on grey system theory, has become a powerful tool for the prediction problems in power systems. However, the prediction accuracy of grey model is unsatisfying when original data set shows great randomness. In this paper, in order to improve the prediction capability of grey model, the exponential smoothing (ES) method is integrated into GM(1,1) through the preprocessing for original data set. We call the proposed model as ESGM(1,1). The Taylor approximation method is then presented to find the optimal coefficient values of ESGM(1,1). The improved model is defined as T-ESGM(1,1). Finally, Markov chain model is applied to T-ESGM(1,1) for achieving the high prediction accuracy. We call the proposed model as MC-T-ESGM(1,1). A real case of atomic power generation in Japan is used to validate the effectiveness of proposed model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.