Abstract
We consider a linear stochastic differential equation with stochastic drift. We study the problem of approximating the solution of such equation through an Ornstein–Uhlenbeck type process, by using direct methods of calculus of variations. We show that general power cost functionals satisfy the conditions for existence and uniqueness of the approximation. We provide some examples of general interest and we give bounds on the goodness of the corresponding approximations. Finally, we focus on a model of a neuron embedded in a simple network and we study the approximation of its activity, by exploiting the aforementioned results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.