Abstract

Edge detection and enhancement are widely used in image processing applications. In this paper we consider the problem of optimizing spatial frequency domain filters for detecting edges in digital pictures. The filter is optimum in that it produces maximum energy within a resolution interval of specified width in the vicinity of the edge. We show that, in the continuous case, the filter transfer function is specified in terms of the prolate spheroidal wave function. In the discrete case, the filter transfer function is specified in terms of the sampled values of the first-order prolate spheroidal wave function or in terms of the sampled values of an asymptotic approximation of the wave function. Both versions can be implemented via the fast Fourier transform (FFT). We show that the optimum filter is very effective for detecting blufred and noisy edges. Finally, we compare the performance of the optimum edge detection filter with other edge detection filters using a variety of input images.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call