Abstract

With the use of energy harvesting technologies, the lifetime of a wireless sensor network (WSN) can be prolonged significantly. Unlike a traditional WSN powered by non-rechargeable batteries, the energy management policy of an energy harvesting WSN needs to take into account the energy replenishment process. In this paper, we study the energy allocation for sensing and transmission in an energy harvesting sensor node with a rechargeable battery and a finite data buffer. The sensor node aims to maximize the total throughput in a finite horizon subject to time-varying energy harvesting rate, energy availability in the battery, and channel fading. We formulate the energy allocation problem as a sequential decision problem and propose an optimal energy allocation (OEA) algorithm using dynamic programming. We conduct simulations to compare the performance between our proposed OEA algorithm and the channel-aware energy allocation (CAEA) algorithm from [1]. Simulation results show that the OEA algorithm achieves a higher throughput than the CAEA algorithm under different settings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call