Abstract

Abstract The embedded discontinuous Galerkin (EDG) method by Cockburn, Gopalakrishnan and Lazarov [B. Cockburn, J. Gopalakrishnan and R. Lazarov, Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second-order elliptic problems, SIAM J. Numer. Anal. 47 2009, 2, 1319–1365] is obtained from the hybridizable discontinuous Galerkin method by changing the space of the Lagrangian multiplier from discontinuous functions to continuous ones, and adopts piecewise polynomials of equal degrees on simplex meshes for all variables. In this paper, we analyze a new EDG method for second-order elliptic problems on polygonal/polyhedral meshes. By using piecewise polynomials of degrees k + 1 {k+1} , k + 1 {k+1} , k ( k ≥ 0 {k\geq 0} ) to approximate the potential, numerical trace and flux, respectively, the new method is shown to yield optimal convergence rates for both the potential and flux approximations. Numerical experiments are provided to confirm the theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.