Abstract
We construct an optimal eighth-order scheme which will work for multiple zeros with multiplicity [Formula: see text], for the first time. Earlier, the maximum convergence order of multi-point iterative schemes was six for multiple zeros in the available literature. So, the main contribution of this study is to present a new higher-order and as well as optimal scheme for multiple zeros for the first time. In addition, we present an extensive convergence analysis with the main theorem which confirms theoretically eighth-order convergence of the proposed scheme. Moreover, we consider several real life problems which contain simple as well as multiple zeros in order to compare with the existing robust iterative schemes. Finally, we conclude on the basis of obtained numerical results that our iterative methods perform far better than the existing methods in terms of residual error, computational order of convergence and difference between the two consecutive iterations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.