Abstract

In this work, an optimal distributed control problem of the viscous generalized Camassa–Holm equation is considered. By the Dubovitskii and Milyutin functional analytical approach, we prove the Pontryagin maximum principle of the investigational system. The necessary condition for optimality is established for the controlled object in the fixed final horizon case and, subsequently, a remark on how to apply the obtained results is made as an illustration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.