Abstract
This paper proposes a hybrid energy system consisting of wind, photovoltaic and fuel cell designed to supply continuous power to the load. A simple and economic control with DC-DC converter is used for maximum power point tracking and hence maximum power extraction from the wind turbine and photovoltaic array. Due to the intermittent nature of both the wind and photovoltaic energy sources, a fuel cell is added to the system for the purpose of ensuring continuous power flow. The fuel cell is thus controlled to provide the deficit power when the combined wind and photovoltaic sources cannot meet the net power demand. In worst environmental conditions, when there is no output power from the wind or photovoltaic sources, the fuel cell will operate at its rated power of 10 kW. Hence this system under any operating condition will ensure a minimum power flow of 10 kW to the load. This hybrid system allows maximum utilization of freely available renewable energy sources like wind and photovoltaic and demand-based utilization of hydrogen-based fuel cell. The proposed system is attractive owing to its simplicity, ease of control and low cost. Also it can be easily adjusted to accommodate different and any number of energy sources. A complete description of this system is presented along with its simulation results which ascertain its feasibility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.