Abstract
We deal with an optimal control problem in coefficients for a strongly degenerate diffusion equation with interior degeneracy, which is due to the nonnegative diffusion coefficient vanishing with some rate at an interior point of a multi-dimensional space domain. The optimal controller is searched in the class of functions having essentially bounded partial derivatives. The existence of the state system and of the optimal control are proved in a functional framework constructed on weighted spaces. By an approximating control process, explicit approximating optimality conditions are deduced, and a representation theorem allows one to express the approximating optimal control as the solution to the eikonal equation. Under certain hypotheses, further properties of the approximating optimal control are proved, including uniqueness in some situations. The uniform convergence of a sequence of approximating controllers to the solution of the exact control problem is provided. The optimal controller is numerically constructed in a square domain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.