Abstract

In this paper we investigate the reconstruction conditions of nuclear norm minimization for low-rank matrix recovery. We obtain sufficient conditions $\delta_{tr}<t/(4-t)$ with $0<t<4/3$ to guarantee the robust reconstruction $(z\neq0)$ or exact reconstruction $(z=0)$ of all rank $r$ matrices $X\in\mathbb{R}^{m\times n}$ from $b=\mathcal{A}(X)+z$ via nuclear norm minimization. Furthermore, we not only show that when $t=1$, the upper bound of $\delta_r<1/3$ is the same as the result of Cai and Zhang \cite{Cai and Zhang}, but also demonstrate that the gained upper bounds concerning the recovery error are better. Moreover, we prove that the restricted isometry property condition is sharp. Besides, the numerical experiments are conducted to reveal the nuclear norm minimization method is stable and robust for the recovery of low-rank matrix.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.