Abstract

Brown adipose tissue (BAT) is responsible for non-shivering thermogenesis and is an attractive therapeutic target for combating obesity and related diseases. Human BAT activity has been evaluated by 18F-fluorodeoxyglucose-positron emission tomography/computed tomography (18FDG-PET/CT) under acute cold exposure, but the method has some serious limitations, including radiation exposure. Infrared thermography (IRT) may be a simple and less-invasive alternative to evaluate BAT activity. In the present study, to establish an optimal condition for IRT, using a thermal imaging camera, skin temperature was measured in the supraclavicular region close to BAT depots (Tscv) and the control chest region (Tc) in 24 young healthy volunteers. Their BAT activity was assessed as the maximal standardized uptake value (SUVmax) by 18FDG-PET/CT. Under a warm condition at 24–27°C, no significant correlation was found between the IRT parameters (Tscv, Tc,, and the difference between Tscv and Tc,, Δtemp) and SUVmax, but 30–120 min after cold exposure at 19°C, Tscv and Δtemp were significantly correlated with SUVmax (r = 0.40–0.48 and r = 0.68–0.76). Δtemp after cold exposure was not affected by mean body temperature, body fatness, and skin blood flow. A lower correlation (r = 0.43) of Δtemp with SUVmax was also obtained when the participant’s hands were immersed in water at 18°C for 5 min. Receiver operating characteristic analysis revealed that Δtemp after 30–60 min cold exposure can be used as an index for BAT evaluation with 74% sensitivity, 92% specificity, and 79% diagnostic accuracy. Thus, IRT may be useful as a simple and less-invasive method for evaluating BAT, particularly for large-scale screening and longitudinal repeat studies.

Highlights

  • Brown adipose tissue (BAT) is responsible for non-shivering thermogenesis (NST) and is involved in the regulation of whole-body energy expenditure and body fatness [1]

  • To investigate the optimal index for assessing BAT thermogenic activity using the Infrared thermography (IRT) method, healthy volunteer subjects were exposed to the cold for 2 h, and the skin temperature of the supraclavicular region close to BAT depots (Tscv) was compared with the metabolic activity (SUVmax) assessed by the standard 18FDG-positron emission tomography (PET)/computed tomography (CT) method

  • Our results showed that the cold-induced response of Δtemp, reflecting the difference between Tscv and a control chest region apart from BAT depots (Tc), was the most relevant index of SUVmax

Read more

Summary

Introduction

Brown adipose tissue (BAT) is responsible for non-shivering thermogenesis (NST) and is involved in the regulation of whole-body energy expenditure and body fatness [1]. The specific roles of these authors are articulated in the ‘author contributions’ section

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.