Abstract

ABSTRACTMicrogrid (MG) clustering is regarded as an important driver in improving the robustness of MGs. However, little research has been conducted on providing appropriate MG clustering. This article addresses this shortfall. It proposes a novel multi-objective optimization approach for finding optimal clustering of autonomous MGs by focusing on variables such as distributed generation (DG) droop parameters, the location and capacity of DG units, renewable energy sources, capacitors and powerline transmission. Power losses are minimized and voltage stability is improved while virtual cut-set lines with minimum power transmission for clustering MGs are obtained. A novel chaotic grey wolf optimizer (CGWO) algorithm is applied to solve the proposed multi-objective problem. The performance of the approach is evaluated by utilizing a 69-bus MG in several scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.