Abstract
We consider a multistage asset acquisition problem where assets are purchased now, at a price that varies randomly over time, to be used to satisfy a random demand at a particular point in time in the future. We provide a rare proof of convergence for an approximate dynamic programming algorithm using pure exploitation, where the states we visit depend on the decisions produced by solving the approximate problem. The resulting algorithm does not require knowing the probability distribution of prices or demands, nor does it require any assumptions about its functional form. The algorithm and its proof rely on the fact that the true value function is a family of piecewise linear concave functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.