Abstract
AbstractThe control signal magnitude and energy are among the limiting and therefore important factors to be addressed in the practical applications of a synchronization scheme. In this paper, we present an algorithm to find control parameters in an active sliding mode controller in order to reduce the control effort in synchronizing non‐identical chaotic systems. We also determine uncertainties bound on the systems dynamics for which the calculated control parameters still guarantee the occurrence of the sliding motion of the error states. The proposed controller was practically applied on an experimental setup, consisting of two chaotic circuits, which resembles Chen and Lu systems behavior. Experimental results confirm our theoretical reasoning as well as the effectiveness of the proposed control design technique. Copyright © 2010 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Circuit Theory and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.