Abstract

In this paper, the magnetohydrodynamic 3D flow of Prandtl nanoliquid subject to convectively heated extendable surface has been discussed. A linear stretching surface makes the flow. Thermophoretic and Brownian motion impacts are explored. Heat transfer for convective procedure is considered. Prandtl liquid is taken electrically conducted through applied magnetic field. Suitable non-dimensional variables lead to strong nonlinear ordinary differential system. The obtained nonlinear differential systems are solved through optimal homotopic technique. Physical quantities like skin friction coefficients and Nusselt number are explored via plots. It is observed that effects of Hartman parameter and Biot number on temperature and concentration are quite similar. Both temperature and concentration are enhanced for larger values of Hartman parameter and Biot number.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call