Abstract
In this paper we consider the k-fixed-endpoint path cover problem on proper interval graphs, which is a generalization of the path cover problem. Given a graph G and a set T of k vertices, a k-fixed-endpoint path cover of G with respect to T is a set of vertex-disjoint simple paths that covers the vertices of G, such that the vertices of T are all endpoints of these paths. The goal is to compute a k-fixed-endpoint path cover of G with minimum cardinality. We propose an optimal algorithm for this problem with runtime O(n), where n is the number of intervals in G. This algorithm is based on the Stair Normal Interval Representation (SNIR) matrix that characterizes proper interval graphs. In this characterization, every maximal clique of the graph is represented by one matrix element; the proposed algorithm uses this structural property, in order to determine directly the paths in an optimal solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.