Abstract

Fifth generation (5G) wireless networks are based on the use of spectrum blocks above 6 GHz in the millimeter wave (mmWave) range to increase throughput and reduce the overall level of interference in very busy frequency bands below 6 GHz. With the global deployment of the first commercial installations of 5G, the availability of multi-Gbps wireless connections in the mmWave frequency band becomes closer to reality and opens up some unique uses for 5G. Although, mmWave communication is expected to enable high-power radio links and broadband wireless intranet, its main challenges are inherent poor propagation conditions and high transmitter-receiver coordination requirement, which prevent it from realizing its full potential. When smart reflective surfaces are used in mmWave communication, channel state information becomes complex and imprecise. In this study, a hybrid intelligent reflecting surface consisting of a large number of passive components and a small number of RF circuits is proposed as a solution. Then, an improved deep neural network (DNN)-based technique is proposed to estimate the effective channel. The proposed technique provides better channel estimation performance according to the simulation results and improves the quality of service.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call