Abstract

We propose a modification of our MPGP algorithm for the solution of bound constrained quadratic programming problems so that it can be used for minimization of a strictly convex quadratic function subject to separable convex constraints. Our active set based algorithm explores the faces by conjugate gradients and changes the active sets and active variables by gradient projections, possibly with the superrelaxation steplength. The error estimate in terms of extreme eigenvalues guarantees that if a class of minimization problems has the spectrum of the Hessian matrix in a given positive interval, then the algorithm can find and recognize an approximate solution of any particular problem in a number of iterations that is uniformly bounded. We also show how to use the algorithm for the solution of separable and equality constraints. The power of our algorithm and its optimality are demonstrated on the solution of a problem of two cantilever beams in mutual contact with Tresca friction discretized by almost twelve millions nodal variables.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.