Abstract

The analysis of adaptive finite element methods in practice immediately leads to eigenvalue clusters which requires the simultaneous marking in adaptive finite element methods. A first analysis for multiple eigenvalues of the recent work Dai et al. (arXiv Preprint 1210.1846v2, 2013) introduces an adaptive method whose marking strategy is based on the element-wise sum of local error estimator contributions for multiple eigenvalues. This paper proves the optimality of a practical adaptive algorithm based on a lowest-order conforming finite element method for eigenvalue clusters for the eigenvalues of the Laplace operator in terms of nonlinear approximation classes. All estimates are explicit in the initial mesh-size, the eigenvalues and the cluster width to clarify the dependence of the involved constants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.