Abstract
We use optical and near-IR imaging to examine the properties of the significant excess population of K>=19 galaxies found in the fields of 31 z=1-2 radio-loud quasars by Hall, Green & Cohen (1998). The excess occurs on two spatial scales: a component at <40'' from the quasars significant compared to the galaxy surface density at >40'' in the same fields, and a component roughly uniform to ~100'' significant compared to the galaxy surface density seen in random-field surveys in the literature. The r-K color distributions of the excess galaxy populations are indistinguishable and are significantly redder than the color distribution of the field population. The excess galaxies are consistent with being predominantly early-type galaxies at the quasar redshifts, and there is no evidence that they are associated with intervening MgII absorption systems. The average excess within 0.5 Mpc (~65'') of the quasars corresponds to Abell richness class ~0 compared to the galaxy surface density at >0.5 Mpc from the quasars, and to Abell richness class ~1.5 compared to that from the literature. We discuss the spectral energy distributions (SEDs) of galaxies in fields with data in several passbands. Most candidate quasar-associated galaxies are consistent with being 2-3 Gyr old early-types at the quasar redshifts of z~1.5. However, some objects have SEDs consistent with being 4-5 Gyr old at z~1.5, and a number of others are consistent with ~2 Gyr old but dust-reddened galaxies at the quasar redshifts. These potentially different galaxy types suggest there may be considerable dispersion in the properties of early-type cluster galaxies at z~1.5. There is also a population of galaxies whose SEDs are best modelled by background galaxies at z>2.5.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.