Abstract

Dissolved oxygen (DO) monitoring is of vital importance to water treatment, sewage treatment, aquaculture and biological research. The traditional method for DO detection is an electrochemical method called the Clark electrode. This electrochemical method has been widely used as it is simple and inexpensive; however, the critical drawback for this kind of sensor is that it is easily affected by pH variations, and by the concentration of H2S and SO2. Optical sensing for DO detection is a newly developed technology, which can avoid most of the drawbacks of the electrochemical sensors. A DO sensor using fluorescence detection is described in this paper. The oxygen concentration measurement principle is based on optical phase detection, which is more precise than the traditional intensity detection method. Emission is carried out by a low-cost, specially designed light emitting diode (LED) source. To avoid an unwanted phase shift, a reference LED is used to improve the degree of accuracy. The sensing material for fluorescence is a ruthenium complex. A discrete Fourier transform (DFT) algorithm was used for the phase calculation. The system was designed into a stainless steel probe, and dissolved oxygen concentration measurement results for various applications are presented in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.