Abstract

An optical packet switch design using optical switching and shared electronic buffering is described and analyzed. The electronic buffering and add/drop unit allows random memory access, variable packet length, and aggregation/segregation of low bit rate streams. The design is scalable to a large number of wavelengths, and employs contention resolution by using the wavelength dimension combined with electronic buffering. The number of buffer inputs, i.e. the number of optoelectronic conversions, is minimized. The packet loss and delay performance when using fixed packet length and electronic buffering are investigated by simulation. If the link utilization is moderate, the buffering requirements becomes minimal. If number of wavelengths in the link is increased, the number of buffer inputs can be reduced. With a sufficiently high number of wavelengths, the buffer requirements is minimal, even when the link utilization is high.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.