Abstract

The novel core network architecture presented in this paper realizes distributed all-optical switching of payload by partitioning the network into a number of geographically limited domains, where two-way reservations are effective. Thus, inside each domain, loss is eliminated, while traffic from many nodes can be aggregated into single bursts, improving efficiency. Clustered nodes contribute contiguous optical slots, which are marshaled into composite optical frames destined for other clusters, under the guidance of a reservation-based control protocol. The lossless aggregation of traffic from several core nodes allows the use of cost-effective bufferless all-optical transport among the domains with electrical buffers employed at the periphery of the system. The end result is a triple improvement in loss probabilities, efficiency, and cost. This is achieved by exploiting three features of the architecture: the distributed switching functionality (as in early LANs when centralized switching was expensive), localized reservations (avoiding the intolerable delays of end-to-end reservations), and a reduced number of source-destination pairs (by means of node clustering into reservation domains)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.